Towards a Model-Based Approach to Support Physical Test Process of Aircraft Hydraulic Systems
Abstract
The physical integration of an aircraft consists of the assembly of several complex subsystems (including hydraulic systems) developed by different stakeholders. The cleanliness of the developed hydraulic subsystems is ensured by performing several decontamination and flushing tests. This testing phase is very tedious as it is mainly performed by SCADA (Supervisory Control and Data Acquisition) systems and depends on chemical substances. However, as the design is mainly expressed in informal textual languages and synoptic diagrams, this testing is currently done manually and is determined by the experience of the testers. This makes it error-prone and time-consuming. In this paper, we propose to capitalize the effort for physical testing of hydraulic systems by proposing a model-based system engineering approach that allows: (i) to graphically specify the systems under test and (ii) to automatically generate the corresponding test cases. A proof of concept is proposed as well as a case study.