Abstract : The 17O and 18O isotope fractionation associated with photolysis of O3 in the Chappuis band was determined using a broadband light source with cutoff filters at 455, 550, and 620 nm and narrowband light sources at 530, 617, and 660 nm. The isotope effects follow a mass-dependent fractionation pattern (δ17O/δ18O = 0.53). Contrary to theoretical predictions, fractionations are negative for all wavelength ranges investigated and do not change signs at the absorption cross-section maximum. Our measurements differ from theoretical calculations by as much as 34‰ in inline image = (18J/16J − 1). The wavelength dependence is also weaker than predicted. Photo-induced fractionation is strongest when using a low-wavelength cutoff at 620 nm with inline image = −26.9(±1.4)‰. With decreasing wavelength, fractionation values diminish to inline image = −12.9(±1.3)‰ at 530 nm. Results from an atmospheric model demonstrate that visible light photolysis is the most important tropospheric sink of O3, which thus contributes about one sixth to the ozone enrichment.