Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research: Atmospheres Année : 2013

Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP

Résumé

Level 1 measurements, including cross-polarized backscatter, from the Cloud-Aerosol Lidar with Orthogonal Polarization lidar, have been used to document the vertical structure of the cloud thermodynamic phase at global scale. We built a cloud phase identification (liquid, ice, or undefined) in the Global Climate Model (GCM)-oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) and analyzed the spatial distribution of liquid and ice clouds in five January, February, March (JFM) seasons of global-scale observations (2007-2011). We developed a cloud phase diagnosis in the Cloud Feedback Model Intercomparison Program Observation Simulator Package to evaluate the cloud phase description in the LMDZ5B climate model. The diagnosis in the simulator is fully consistent with the CALIPSO-GOCCP observations to ensure that differences between the observations and the "model + simulator" ensemble outputs can be attributed to model biases. We compared the liquid and ice cloud vertical distributions simulated by the model with and without the simulator to quantify the impact of the simulator. The model does not produce liquid clouds above 3 km and produces ice instead of liquid at low and middle altitudes in polar regions, as well as along the Intertropical Convergence Zone. The model is unable to replicate the observed coexistence of liquid and ice cloud between 0°C and -40°C. Liquid clouds dominate T > -21°C in the observations, T > -12°C in the model + simulator, and T > -7.5°C in the model parameterization. Even if the simulator shifts the model cloud phase parameterization to colder temperature because of the lidar instrument peculiarities, the cloud phase transition remains too warm compared to the observations. Key Points To document the partition of liquid and ice phase within clouds at global scale To evaluate the description of liquid and ice clouds in a climate model To build a new cloud thermodynamic phase climatology vertically resolved ©2013. American Geophysical Union. All Rights Reserved.

Domaines

Climatologie
Fichier principal
Vignette du fichier
jgrd.50376.pdf (6.87 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01092198 , version 1 (22-10-2021)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Grégory Cesana, Hélène Chepfer. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. Journal of Geophysical Research: Atmospheres, 2013, 118 (14), pp.7922-7937. ⟨10.1002/jgrd.50376⟩. ⟨hal-01092198⟩
143 Consultations
29 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More