Skip to Main content Skip to Navigation
Journal articles

Cerebral Oxygenation Reserve: The Relationship Between Physical Activity Level and the Cognitive Load During a Stroop Task in Healthy Young Males

Abstract : Introduction: Many studies have reported that regular physical activity is positively associated with cognitive performance and more selectively with executive functions. However, some studies reported that the association of physical activity on executive performance in younger adults was not as clearly established when compared to studies with older adults. Among the many physiological mechanisms that may influence cognitive functioning, prefrontal (PFC) oxygenation seems to play a major role. The aim of the current study was to assess whether executive function and prefrontal oxygenation are dependent on physical activity levels (active versus inactive) in healthy young males. Methods: Fifty-six healthy young males (22.1 ± 2.4 years) were classified as active (n = 26) or inactive (n = 30) according to the recommendations made by the World Health Organization (WHO) and using the Global Physical Activity Questionnaire (GPAQ). Bilateral PFC oxygenation was assessed using functional near-infrared spectroscopy (fNIRS) during a computerized Stroop task (which included naming, inhibition, and switching conditions). Accuracy (% of correct responses) and reaction times (ms) were used as behavioural indicators of cognitive performances. Changes in oxygenated (∆HbO2) and deoxygenated (∆HHb) hemoglobin were measured to capture neural changes. Several two-way repeated measures ANOVAs (Physical activity level x Stroop conditions) were performed to test the null hypothesis of an absence of interaction between physical activity level and executive performance in prefrontal oxygenation. Results: The analysis revealed an interaction between physical activity level and Stroop conditions on reaction time (p = 0.04; ES = 0.7) in which physical activity level had a moderate effect on reaction time in the switching condition (p = 0.02; ES = 0.8) but not in naming and inhibition conditions. At the neural level, a significant interaction between physical activity level and prefrontal oxygenation was found. Physical activity level had a large effect on ΔHbO2 in the switching condition in the right PFC (p = 0.04; ES = 0.8) and left PFC (p = 0.02; ES = 0.96), but not in other conditions. A large physical activity level effect was also found on ΔHHb in the inhibition condition in the right PFC (p < 0.01; ES = 0.9), but not in the left PFC or other conditions. Conclusion: The results of this cross-sectional study indicate that active young males performed better in executive tasks than their inactive counterparts and had a larger change in oxygenation in the PFC during these most complex conditions.
Document type :
Journal articles
Complete list of metadata
Contributor : Jean-Christophe Daviet Connect in order to contact the contributor
Submitted on : Thursday, July 8, 2021 - 1:45:07 PM
Last modification on : Wednesday, October 20, 2021 - 3:22:25 AM
Long-term archiving on: : Saturday, October 9, 2021 - 6:43:06 PM


Cerebral Oxygenation Reserve.p...
Publication funded by an institution


Distributed under a Creative Commons Attribution 4.0 International License




Roman Goenarjo, Laurent Bosquet, Nicolas Berryman, Valentine Metier, Anaick Perrochon, et al.. Cerebral Oxygenation Reserve: The Relationship Between Physical Activity Level and the Cognitive Load During a Stroop Task in Healthy Young Males. International Journal of Environmental Research and Public Health, MDPI, 2020, 17 (4), pp.1406. ⟨10.3390/ijerph17041406⟩. ⟨hal-02862430⟩



Record views


Files downloads